
International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1331

AN APPLICATION ON TELEGRAM BOT SEARCH
ENGINE USING PYTHON

Dr.S.BHUVANESHWARI M.COM..,M.Phil,PGDCA;MBA,Ph.D Assistant
Professor, Department of B.Com.CA, Sri Krishna Adithya College of Arts and
Science, Coimbatore.

SREERAG. R Department of B.Com.CA, Sri Krishna Adithya College of Arts
and Science, Coimbatore

1.1 INTRODUCTION:

In today's fast-paced digital world, information is power. We're constantly
bombarded with a deluge of data, making it challenging to find precisely what we
need, when we need it. Searching within specific platforms like Telegram can be
especially cumbersome, often relying on scrolling through endless chats or
remembering specific keywords. This is where our innovative Telegram Bot Search
Engine comes in, offering a streamlined and efficient way to unlock the vast library of
information contained within Telegram.

Imagine having a personal librarian at your fingertips, capable of instantly retrieving
any message, file, or link shared within your Telegram groups and channels. Our
Telegram Bot Search Engine transforms this vision into reality. It's a powerful tool
designed to empower users with quick and precise search capabilities, eliminating
the frustration of sifting through irrelevant data. Whether you're looking for a specific
document shared months ago, a link to an interesting article, or a particular piece of
information discussed in a group chat, our bot is your key to unlocking it all.

This project addresses the inherent limitations of Telegram's native search
functionality. While Telegram offers basic search, it often struggles with complex
queries, doesn't always index all content effectively, and can be slow, especially in

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1332

large groups. Our bot overcomes these hurdles by employing advanced indexing and
search algorithms. It meticulously analyzes the content of your Telegram chats,
including text, files, links, and even media captions, creating a comprehensive and
searchable database. This allows for highly accurate and rapid retrieval of information,
saving you valuable time and effort.

The core functionality of the Telegram Bot Search Engine revolves around a
userfriendly interface. Simply add the bot to your Telegram groups or channels, and it
will begin indexing the content (with appropriate permissions, of course). Once
indexing is complete, you can interact with the bot through simple commands. You
can search using keywords, phrases, or even specific file types. The bot returns
results in a clear and organized manner, providing context by displaying the message,
sender, and date, making it easy to identify the information you're looking for.
Beyond basic keyword search, our project aims to incorporate advanced search
features. This includes support for Boolean operators (AND, OR, NOT) to refine
search queries, wildcard searches to find variations of words, and even date range
filtering to narrow down results to specific time periods. Future iterations may include
natural language processing (NLP) capabilities, allowing users to search using more
conversational language.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1333

1.1.1INTRODUCTION ON VISUAL STUDIO:

Visual Studio 2022, developed by Microsoft, is a sophisticated integrated
development environment (IDE) tailored for software development. With a sleek and
user-friendly interface, it offers developers a comfortable workspace for coding,
debugging, and project management. One of its standout features is its broad
platform support, accommodating development for Windows, Android, iOS, web, and
cloud platforms. The IDE comes equipped with a wide array of tools and templates
for various programming languages and frameworks, such as .NET, C++, Python,
and JavaScript. Notably, Visual Studio 2022 is optimized for performance, enabling
developers to work on extensive projects efficiently. Its collaboration tools, including
Live Share, facilitate real-time co-authoring and pair programming, fostering
seamless teamwork regardless of team members’ locations.

Visual studio 2022, developed by Microsoft , is a moreover, the ide harnesses the
power of artificial intelligence (AI) to provide intelligent code suggestions, refactoring
tools, and code analysis capabilities, thereby enhancing productivity. With built-in
integration for azure services, visual studio 2022 simplifies the development,
deployment, and management of cloud-native applications. Furthermore, the ide's
extensibility allows developers to customize their workspace with additional tools and
features through a rich ecosystem of extensions. Microsoft's commitment to
accessibility ensures that visual studio 2022 is inclusive, with features and tools
designed to improve accessibility and usability for all developers. Whether you're a
seasoned developer or a novice embarking on your coding journey, visual studio
2022 offers a comprehensive and versatile environment to create high-quality
applications efficiently.In addition to its robust feature set, visual studio 2022
prioritizes user experience and workflow efficiency. Its intuitive interface and
customizable layout options cater to diverse developer preferences, promoting a
seamless and personalized coding experience. Furthermore, the ide's integration with
Microsoft's ecosystem, including azure devops and github, facilitates seamless
project management and version control. With regular updates and improvements
driven by community feedback, visual studio 2022 remains at the forefront of modern

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1334

software development, empowering developers to turn their ideas into reality with
speed, precision, and innovation.

Visual studio 2022 embodies cutting-edge technology trends like containerization and
Microservices architecture, equipping developers with essential tools for crafting
scalable and robust applications. Its rich debugging features, spanning advanced
breakpoints and performance profiling, empower swift issue identification and
resolution, underpinning the delivery of top-tier software. Supported by a vibrant
developer community and a wealth of documentation and resources, visual studio
2022 emerges not only as a premier development environment but also as an
invaluable learning hub. Developers of all proficiency levels find within it a nurturing
ground for growth and innovation, contributing to the continuous evolution of the
software development landscape.

1.2 SYSTEM SPECIFICATION:
1.2.1 SOFTWARE REQUIREMENTS:

Operating System:Windows 7, 10, 11, Linux

Programming Language: Python

IDE/Workbench: Visual Studio code

1.2.2 HARDWARE REQUIREMENTS

Processor: Any processor

Hard Disk: 128GB or more

RAM: 8GB or more

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1335

2.1 EXISTING AND PROPOSED SYSTEM

2.1.1 EXISTING SYSTEM:
Create a Telegram bot that allows users to search various data

sources (e.g., web, specific websites, databases) and receive results directly within
the Telegram chat.

Search Engines (APIs): Instead of building your own search index, use existing search
engine APIs like:

• Google Custom Search Engine (CSE): Good for searching specific websites or a
curated set of sites. You define the search scope.

• SerpAPI: Provides access to Google, Bing, and other search engine results.
More comprehensive, but often comes with a cost.

• DuckDuckGo API: A privacy-focused option.

Telegram Bot API: Essential for interacting with Telegram. This is the foundation of your
bot.

Data Storage (if needed):

• Cloud Databases (e.g., Firebase, MongoDB Atlas): If you need to store any data
related to searches, user preferences, or search history. Consider serverless
options for ease of use.

• Local Storage (if appropriate): For very simple use cases, you might store data
in a file, but this is less scalable.

Programming Languages and Frameworks:

• Python: Popular for bot development due to its libraries (e.g., pythontelegram-bot,
requests).

• Node.js: Another good choice with strong asynchronous capabilities, wellsuited for
handling bot interactions.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1336

• Other Languages: Many languages have Telegram bot API libraries. Choose one
you're comfortable with.

Drawbacks of the Existing System:

1. Limited Search Accuracy:
o Keyword-based limitations: Simple keyword matching can lead to irrelevant

results. It lacks semantic understanding and context.

o Poor ranking: Results are not ranked based on relevance, leading to poor
user experience.

o Lack of advanced filtering: Users cannot refine searches based on specific
criteria (date, file type, etc.).

2. Scalability Issues:
o Memory constraints: Storing results in memory limits the number of

concurrent users and the size of the result sets.

o Database inefficiency: Lack of an optimized database can lead to slow
retrieval and storage.

o API rate limits: External search APIs often have rate limits, which can restrict
the number of searches.

3. Poor User Experience:
o Text-only limitations: Lack of rich media support makes it difficult to display

complex information.

o Clunky interface: Simple text-based responses can be difficult to navigate.

o Unclear error messages: Users may not understand why their searches
failed.

4. Security Concerns:
o Web scraping vulnerabilities: If the bot relies on web scraping, it may be

vulnerable to changes in website structure or anti-scraping measures.

o Data security: Sensitive search queries or user data may not be properly
protected.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1337

5. Maintainability and Extensibility:
o Code complexity: Basic implementations may become difficult to maintain

as the bot's functionality grows.

o Lack of modularity: Adding new search sources or features may require
significant code changes.

o No logging: Debugging and monitoring issues are difficult without proper
logging.

6. Performance Problems:
o Slow response times: Web scraping and basic API calls can be slow,

especially for complex queries. o Resource consumption: Inefficient code
can consume excessive CPU and memory resources.

o Concurrency issues: Simple implementations may not handle concurrent
user requests efficiently.

7. Lack of personalization:
o The bot will not be able to learn the users preferences, and therefore not give

optimized search results.

8. Lack of search history:
o The bot will not be able to remember previous searches.

2.1.2 PROPOSED SYSTEM:

A. Core Functionality:
Search Interface: Users interact with the Telegram bot via commands or natural language
queries.

Search Indexing: A backend system maintains an index of searchable content. This could
include:

 Public Telegram channels and groups (with permission, respecting privacy).

 Specific datasets or documents.

 Web content (via web scraping or APIs).

Search Engine: The core search engine processes user queries against the index.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1338

It should support:

 Keyword search.

 Phrase search.

 Boolean operators (AND, OR, NOT).

 Filtering (by date, channel, etc.).

 Ranking of results by relevance.

Result Display: The bot presents search results to the user in a user-friendly format within
Telegram. This might include:

 Short snippets of text.

 Links to the original content.

 Channel/group information (if applicable).

 Pagination for large result sets.

B. System Architecture:
Telegram Bot API: The bot interacts with Telegram using the Telegram Bot API.

Backend Server: A server (e.g., cloud-based) hosts the following components: Bot
Logic: Handles user interactions, query processing, and result formatting. (e.g.,
Python with python-telegram-bot library).

Search Engine: (e.g., Elasticsearch, Solr, Meilisearch, or a custom solution).
Database (Optional): For storing user data, search history, or other persistent
information. (e.g., PostgreSQL, MongoDB).

Indexer: A process that periodically updates the search index.

Data Source(s): The source of the content to be indexed.

C. Key Considerations:
Scalability: The system should be able to handle a growing number of users and indexed
content.

Performance: Search queries should be processed quickly.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1339

Data Privacy: Respect user privacy and adhere to Telegram's terms of service
regarding data collection and storage. Only index publicly available content or
content where you have explicit permission.

Security: Secure the backend server and protect user data.
Indexing Strategy: Choose an appropriate indexing strategy based on the data source
and search requirements. Consider:

 Frequency of updates.

 Data format.

 Content filtering.

2.1.3 ABOUT SOFTWARE:

The IDE used for this project is Visual Studio Code. All
Python files are written with Visual Studio code, and all required packages can be
easily installed in this IDE. Modules and libraries such as pyttsx3,Wikipedia, keybo
ard, pywhatkit, pyjokes, PyPDF2, telegram API, and PyQt are used in this project. A l
ive GUI is created for interacting with the telegram search engine, as it gives the con
versation a unique and interesting look.

A. Visual Studio Code

It is an IDE, i.e., Integrated Development Environment, which has many features like
supporting scientific tools, web frameworks, refactoring in Python, an integrated

Python debugger, code completion, code and project navigation, etc.

Python-telegram-bot:
Python-telegram-bot is a library that lets you create bots for Telegram using Python. It
provides an asynchronous interface to the Telegram Bot API.

Features
 Convenience methods and shortcuts: Make it easier to develop bots

 High-level classes: Make it easier to develop bots

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1340

 Conversation handlers: Manage the flow of conversations based on user inputs

 Optional dependencies: Avoid unnecessary dependency conflicts

Environment Variables for Token: The bot token is now retrieved from an
environment variable (TELEGRAM_BOT_TOKEN). This is crucial for security. Never
hardcode your bot token directly in your code. Set the environment variable before
running the script.

Help Command: Added a /help command to provide instructions to users.

Search Command (/search): Implemented a dedicated /search command so users can
search without using inline queries. This is often more convenient.

Markdown Formatting: Uses Markdown formatting (*bold*) in the bot's messages
for better readability. Make sure to set parse_mode=ParseMode.MARKDOWN in
reply text and input message content.

Case-Insensitive Search: The search_software function now performs a caseinsensitive
search.

Error Handling: Added an error_handler to catch and log errors, and to send a userfriendly
message in case of errors.

Bot Information on Startup: The post start function prints the bot's username and ID
to the console after the bot starts. This is helpful for verification.

Type Hinting: Added type hints for better code readability and maintainability.

Clearer Comments: Improved comments throughout the code.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1341

More Software Data: You'll want to replace the example SOFTWARE_DATA with
your actual software information. Consider loading this from a file (e.g., JSON, CSV)
or a database for larger datasets.

Search Logic: The current search logic is a simple substring search. You might want
to explore more advanced search techniques (e.g., using regular expressions, fuzzy
matching, or a dedicated search library) for more accurate and relevant results.

2.2 FEATURES:

Python has few keywords, simple structure, and a clearly defined
syntax. Python Code is more clearly defined and visible to the eyes. Python's source
code is fairly easy-to-Maintaining. Python's bulk of the library is very portable and
cross-platform compatible on Unix, windows, and macintosh. Python has support for
an interactive mode which allows Interactive testing and debugging of snippets of
code. Portable python can run on a wide variety of hardware platforms and has the
same interface on all platforms.

1. Telegram Bot Integration:
 Use the python-telegram-bot library to interact with the Telegram API. This

allows your bot to receive updates (messages, commands) and send
responses.

2. Search Engine Interface:
 Choose a search engine API (e.g., Google Custom Search, Bing Search API,

or a specialized API like SerpAPI). These APIs provide programmatic access
to search results. Consider usage costs and search quotas.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1342

 Alternatively, for a more limited scope, you could index a specific set of
documents or websites yourself using libraries like Beautiful Soup (for web
scraping) and Whoosh or Elasticsearch (for indexing).

3. Command Handling:
 Define Telegram bot commands (e.g., /search, /help).

 Use the python-telegram-bot's command handler to map commands to specific
functions in your code.

4. Search Query Processing:
 Extract the search query from the user's message.

 Format the query appropriately for the chosen search engine API.

5. Result Display:
 Parse the JSON response from the search engine API.

 Format the search results into a user-friendly message for Telegram
(consider using Markdown for formatting).

6. Error Handling:
 Implement robust error handling to catch issues like API connection problems,

invalid queries, or rate limits. Provide informative messages to the user.

7. Deployment:

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1343

 Deploy your bot to a server (e.g., Heroku, PythonAnywhere, AWS, Google
Cloud) so it can run continuously. You'll need to use a webhook or polling to
receive updates from Telegram.

3.1 SYSTEM DESIGN:

Let's outline a system design for a Telegram bot search engine using Python.
This design focuses on core functionality, scalability considerations, and
maintainability.

Components:

Telegram User: The user interacts with the bot through the Telegram app.

Telegram Bot (Python): This is the core of your application. It will:

 Receive user messages via the Telegram Bot API.
 Parse user queries.
 Send queries to the Search Engine.
 Receive results from the Search Engine.
 Format and send results back to the user via the Telegram Bot API.
 Handle commands (e.g., /start, /help, /settings).

Search Engine: This component is responsible for indexing and searching your data.
Options include:

 Elastic search/OpenSearch: Powerful and scalable, ideal for large datasets and
complex queries. Offers features like fuzzy searching, stemming, and faceting.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1344

 Algolia: A hosted search-as-a-service. Easy to integrate and provides excellent
performance. Good for simpler search needs.

 Whoosh (Python Library): A pure Python search engine. Suitable for smaller
projects or when you need full control and don't want external dependencies.
Less scalable than Elasticsearch/Algolia.

 Custom Solution (using inverted index, etc.): Only consider this if you have
very specific requirements and the other options are unsuitable. It's complex and
requires significant development effort.

Data Sources: These are the sources of the data you want to search. Examples:

 Databases (PostgreSQL, MySQL, MongoDB): Use database connectors (e.g.,
psycopg2, pymysql, pymongo) to retrieve data

.
 Files (CSV, JSON, Text): Parse files using Python libraries like csv, json, or

custom parsing logic.

 Web APIs: Use libraries like requests to fetch data from APIs.

 Other Telegram Channels/Groups: Use the Telegram Bot API to access and
index messages.

 Cache (Redis, Memcached): Store frequently accessed search results to
improve performance. Use a caching library like redis-py or pymemcache.

Implementation Details (Python):

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1345

Telegram Bot Library: Use the python-telegram-bot library.

Search Engine Interaction: Use the appropriate client library for your chosen search
engine (e.g., elasticsearch-py, algolia).

Data Indexing: Create a script to index your data sources into the Search Engine.
This might be a one-time process or a scheduled task (e.g., using cron or a
scheduler library).

Query Processing: Clean and preprocess user queries before sending them to the
Search Engine (e.g., removing stop words, handling synonyms).
Result Formatting: Format search results nicely for display in Telegram messages.
Consider using Markdown for rich text formatting.

Error Handling: Implement robust error handling to catch exceptions and provide
informative messages to the user.

Asynchronous Tasks (Celery, RQ): For long-running tasks (e.g., indexing large
datasets), use a task queue to prevent blocking the Telegram bot.

Scalability and Performance:

Caching: Essential for reducing latency and load on the Search Engine.

Asynchronous Tasks: Prevent blocking the bot and improve responsiveness.

Load Balancing: If your bot becomes popular, use a load balancer to distribute traffic
across multiple bot instances.

Database Optimization: If using databases, optimize queries and indexing for fast
retrieval.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1346

Search Engine Tuning: Configure the Search Engine for optimal performance (e.g.,
shards, replicas, analyzers).

3.1.1 INPUT DESIGN:

The goal of the input design is to control how much dataset is needed as
input, avoid delays, and keep the process simple. The input is designed in such a
way to provide security. The following steps will be taken into account by input
design:

 The dataset should be given as input.
 The dataset should be arranged.
 Techniques for generating input validations

3.1.2 OUTPUT DESIGN:

A high-quality output is one that is easy to understand and meets the
needs of the user. In output design, the method by which information is presented for
immediate use is decided. The right output must be developed while ensuring that
each output element is designed so that the user will find the system easy to use and
effective. Computer output design should be organized and well thought out.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1347

3.1.3 DATABASE DESIGN:

Python provides interfaces to all major commercial databases.

GUI Programming:

Python supports GUI applications that can be created and ported to many
system calls, libraries and windows systems, such as Windows MFC, Macintosh, and
the X Window system of Unix.

Scalable:

Python provides a better structure and support for large programs than shell
scripting.

3.2 MODULES:

Pytelegrambotapi: This module is the core of your Telegram bot. It provides the interface
to interact with the Telegram Bot API.

• Telebot.telebot(BOT_TOKEN): Creates an instance of the bot, using your bot's
token. Replace "YOUR_TELEGRAM_BOT_TOKEN" with the token you get from
botfather on Telegram.

• @bot.message_handler(...): Decorators that define how the bot responds to
specific commands or messages.

• Bot.reply_to(message, ...): Sends a reply to the user who sent the message.
• Bot.infinity_polling(): Keeps the bot running and listening for updates from

Telegram.

Requests: This module is used to make HTTP requests. We use it to fetch the HTML
content of the Google search results page.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1348

• Requests.get(url, headers=...): Sends a GET request to the specified URL. The
headers are crucial to mimic a real web browser, preventing Google from blocking
your bot.

• Response.raise_for_status(): Checks if the HTTP request was successful (status
code 200). If not (e.g., 404, 500), it raises an exception.

Beautifulsoup (Bs4): This module is used for parsing HTML and XML. It makes it easy to
extract the information we need from the Google search results page.

• Beautifulsoup(response.content, "html.parser"): Creates a beautifulsoup object
from the HTML content.

• Soup.find_all("div", class_="yurubf"): Finds all the div elements with the class
yurubf (these contain the search results). This class name is subject to change by
Google. You'll need to inspect the Google search results page's HTML (right-
click, "Inspect" or "Inspect Element" in your browser) to find the current class
name for the search result containers.

• Result.find("a"): Finds the <a> (anchor/link) tag within each result.
• Link["href"]: Extracts the URL from the href attribute of the link.

Urllib.Parse: This module is used for parsing and manipulating urls. Specifically,
urllib.parse.quote() is essential for encoding the search query so that it can be safely
included in the URL. This handles spaces and special characters correctly.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1349

4.1 TESTING AND METHODOLOGIES

4.1.1 SYSTEM TESTING:

System testing verifies that the entire bot application works as expected. Here's a
breakdown of testing strategies:

• Unit Testing (Optional but Recommended): Test individual functions or
components (e.g., the search function, the HTML parsing) in isolation. Python's
unittest module is helpful here.

• Integration Testing: Verify that the different parts of the system (Telegram API
interaction, search engine interaction, data processing) work together correctly.

• Functional Testing: Test the bot's features from the user's perspective:

 Valid Queries: Test with a variety of search terms.
 Edge Cases: Test with empty queries, very long queries, special characters,

etc.

 No Results: Test with queries that are unlikely to return results.
 Error Handling: Simulate network errors or issues with the search engine to

ensure the bot handles them gracefully.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1350

• Performance Testing: Measure the bot's response time. Is it quick enough? How
does it handle a large number of concurrent users?

• Security Testing: Consider potential vulnerabilities (e.g., can a user inject
malicious code into a search query?). Ensure you're not exposing any sensitive
information.

• Usability Testing: Is the bot easy to use? Are the commands clear? Is the output
helpful? Get feedback from other users.

• Deployment Testing: Test the bot in the environment where it will be deployed
(e.g., on a server).

Test Case Input Expected Output

Valid Search

/search Python

programming

Relevant search results with titles and
links.

Empty Query /search

Error message: "Please provide a search
term..."

Long Query
/search ...very long
query...

Handles the long query gracefully (either
truncates it or processes it).

Special
Characters /search !@#$%^&*()

Handles special characters correctly
(either escapes them or returns relevant
results).

No Results

/search
asdfghjklqwertyuiop

Message: "No relevant results found."

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1351

Network Error

(Simulated)

(Disconnect network while
bot is running)

Bot handles the error and potentially logs
it.

4.1.2 UNIT TESTING:

Mocking: The unit tests use unittest.mock.patch to mock the requests.get function.
This isolates the search_duckduckgo function from actual network requests, making
the tests faster and more reliable.

Test Cases: The tests cover different scenarios: successful search, network error, no
results, and HTML parsing issues.

Assertions: The tests use assertEqual, assertIsNone, etc., to verify the expected
behavior of the search_duckduckgo function. This ensures that the function works
correctly under various conditions.

4.2 INTEGRATION TESTING:

Integration testing verifies that the different parts of your system (Telegram bot, search
engine, database if used) work together correctly. Here's a breakdown:

Test Environment: Set up a separate test Telegram bot (BotFather can help you
create one). This prevents your tests from affecting your production bot. It's also a
good idea to use a test database if you have one.

Test Cases: Design test cases that cover various scenarios:

Basic Search: Search for simple keywords and verify that the bot returns relevant results.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1352

Empty Query: Test what happens when the user sends a search command without a
query.

Special Characters: Test searches with special characters or unusual input.

No Results: Search for something unlikely to return results and check the bot's "no results"
message.

Error Handling: Simulate search engine errors (e.g., network issues) and verify that
your bot handles them gracefully (doesn't crash) and provides informative error
messages to the user. This is crucial.

Command Handling: Test the /search command and any other commands you have.

Rate limiting (if applicable): If your search engine has rate limits, test how your bot
handles them.

Database Interactions (if applicable): If you're using a database, test data retrieval,
storage, and updates.

4.2.1 ALPHA TESTING:

Placeholder Search: The search_engine function is crucial. For alpha testing, you might
use:

 A simple list or dictionary of keywords and URLs.
 A small, pre-indexed dataset.
 A mock search engine that returns predictable results.

Error Handling: Implement try...except blocks to handle potential errors (e.g., network
issues, invalid queries). This is essential for a robust bot.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1353

User Feedback: Encourage alpha testers to provide feedback. Include a /feedback
command or a way for users to report issues.

Logging: Use Python's logging module to track bot activity and errors. This will be
invaluable for debugging.

Rate Limiting: Be mindful of Telegram's rate limits. Implement delays or other mechanisms
to prevent your bot from being blocked.

Alpha testing process:

 Small Group: Start with a small group of trusted testers.
 Specific Scenarios: Give testers specific search queries and tasks to perform.

 Feedback Collection: Actively solicit feedback (bugs, usability issues, desired
features). Iterate: Fix bugs, improve the search engine, and add features based on
feedback. Repeat this process until you have a stable and functional bot.

4.2.2 BETA TESTING:

Small Group: Start with a small, trusted group of testers. This allows you to gather
feedback and identify issues early on without overwhelming yourself.

Clear Instructions: Provide your testers with clear instructions on how to use the bot,
including the commands and any specific features you want them to test.

Feedback Mechanism: Set up a way for testers to provide feedback. This could be a
Telegram group, a Google Form, or even just direct messages.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1354

Focus Areas: Direct your testers to focus on specific aspects:

• Search Accuracy: Are the results relevant? Are there any irrelevant or missing
results?

• Bot Responsiveness: Is the bot quick to respond? Are there any delays or timeouts?

• User Interface: Is the bot easy to use? Are the commands intuitive? Is the output
clear and well-formatted?

• Error Handling: Does the bot handle errors gracefully? Are error messages
informative?

• Edge Cases: Try unusual queries, long queries, special characters, etc., to see how
the bot handles them.

Iterate: Based on the feedback you receive, make improvements to the bot. Fix bugs,
improve search accuracy, enhance the user interface, etc. Then, release a new beta
version and repeat the testing process.

Metrics: Track usage and error rates. This will help you identify areas for improvement.

Privacy: Be transparent with your testers about how their data is being used. If you're
using a search API, ensure it aligns with your privacy policy.

4.3 IMPLEMENTATION

4.3.1 PYTHON IMPLEMENTATION:

The standard implementation of python is usually called "cpython' it is the defaut and
widely implementation of the python prochain c. Besides c. Them implementation
alternatives of python, such as jython, ironpython, stackless and pypt allthese python
implementations have specific purpose and roles. All of them make use of simple
python language be execute programs in different ways. Different python
implementations are briefly explained ahead.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1355

IMPLEMENTATION WORK DETAILS

Intialization:

• Create a telegram bot using botfather on telegram. You'll receive a bot token.
• Initialize the updater and dispatcher from python-telegram-bot using your bot token.

• Set up logging.

Command Handler:

• Create a command handler (e.g., using commandhandler) for the search command
(e.g., /search).

• This handler will be triggered when a user sends the /search command.

Search query processing:

• In the command handler, extract the search query from the user's message (the text
after /search).

• Sanitize the query to prevent any malicious input.

Search engine interaction:

• Use your chosen search engine api/library to perform the search using the extracted
query.

• Handle potential errors (e.g., api connection issues, rate limits).
Result formatting:

• Format the search results into a user-friendly message for telegram. You'll likely
want to include the title, a short snippet, and the url of each result. Consider using
markdown for formatting (bolding titles, etc.). Limit the number of results displayed to
avoid overwhelming the user.

Sending the results:

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1356

• Use bot.send_message() to send the formatted results back to the user in the
telegram chat.

Error Handling:

• Implement error handlers (e.g., using errorhandler) to catch and handle any
exceptions during the search process. Provide informative messages to the user.

Polling Or Webhooks:

• Decide whether to use polling (the bot periodically checks for updates) or webhooks
(telegram sends updates to your server). Webhooks are generally recommended for
production bots. You'll need a server to handle webhooks.

5.1 SYSTEM STUDY:
The system study includes details about the current and proposed

system. Existing system is useful to develop proposed system. The existing system
needed to be thoroughly examined and analyzed in order to discover the elements,
inputs, outputs, subsystems, and procedures, as well as the system's requirements.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1357

This increases the total productivity. The use of paper files is avoided and all the
data are efficiently manipulated by the system. It also reduces the space needed to
store the larger paper files and records.

I. Project Goal:
Create a Telegram bot that allows users to search a specific data source (e.g., a
website, a database, a collection of files) and receive relevant results directly within
the Telegram chat.

II. System Architecture:
The system will generally consist of the following components:

Telegram Bot: The interface users interact with. It receives search queries and sends back
results.

Bot Logic (Python): The core of the system. It handles communication with the
Telegram API, processes user queries, interacts with the search engine, and formats
the results for Telegram.

Search Engine/Data Source: This is where the data resides and the actual searching
takes place. Options include:

 External Search API (e.g., Google Custom Search, Algolia): Simplest if you're
searching a public website or have an existing search index.

 Local Search Index (e.g., Whoosh, Elasticsearch): Necessary for searching local
files or databases. Requires indexing the data beforehand.

 Database Search (e.g., SQL, NoSQL): If the data is structured in a database, you
can directly query it.

Data Storage (Optional): If you need to store user data, search history, or other
information, you'll need a database (e.g., SQLite, PostgreSQL, MongoDB).

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1358

III. Functional Requirements:
• Query Handling: The bot must be able to receive and interpret user search queries.

Consider handling different query formats (keywords, phrases, etc.).

• Search Execution: The bot must be able to execute searches against the chosen search
engine/data source.

• Result Retrieval: The bot must retrieve relevant search results.
• Result Formatting: The bot must format the results in a user-friendly way for Telegram

(e.g., using Markdown, including links, summaries).

• Pagination (Optional): If there are many results, implement pagination to avoid
overwhelming the user.

• Error Handling: The bot should handle errors gracefully (e.g., invalid queries, search
engine downtime).

• User Authentication (Optional): If needed, implement user authentication to restrict
access or personalize the experience.

• Command Handling (Optional): Implement commands for help, settings, or other
functionalities.

IV. Non-Functional Requirements:
• Performance: The search should be fast and responsive.
• Scalability: The system should be able to handle a reasonable number of users and

queries.

• Reliability: The bot should be available and functional most of the time.
• Security: Protect user data and prevent unauthorized access.
• Maintainability: The code should be well-structured and easy to maintain.

V. Technology Stack:
• Python: The primary programming language.
• python-telegram-bot library: For interacting with the Telegram Bot API.

• Search Engine/Data Source: (See options above)
• Database (Optional): (See options above)

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1359

.
VI. Development Process:

1. Requirements Gathering: Clearly define the scope and features of the bot.
2. Design: Design the system architecture, database schema (if needed), and user interface.

3. Implementation: Write the Python code, integrate with the Telegram API and search
engine, and implement the required functionalities.

4. Testing: Thoroughly test the bot to ensure it works correctly and handles errors gracefully.

5. Deployment: Deploy the bot to a hosting platform.
6. Monitoring: Monitor the bot's performance and usage.

VII. Key Considerations:
• Telegram Bot API: Familiarize yourself with the Telegram Bot API documentation.

• Search Engine Integration: Choose the appropriate search engine/data source based on
your needs and data.

• Data Indexing (If applicable): If using a local search index, plan the indexing process
carefully.

• Error Handling: Implement robust error handling to prevent the bot from crashing.

• Security: Secure your bot and protect user data.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1360

5.2 EXTENDABLE:

It allows to add low-level modules to the Python interpreter. These modules
enable programmers to add to or customize their tools to be more efficient.

5.2.1 OBJECT-ORIENTED APPROACH:

One of the key aspects of Python is its object-oriented approach. This
basically means that Python bot the concept of class and object encapsulation thus
allowing programs to be efficient in the long run.

5.2.2 HIGHLY DYNAMIC:

Python is one of the most dynamic languages available in the industry
today. There is no need to specify the type of the variable during coding, thus saving
time and increasing efficiency.

5.2.3 EXTENSIVE ARRAY OF LIBRARIES:

Python comes inbuilt with many libraries that can be imported at any instance
and be used in a specific program.

5.2.4 OPEN SOURCE AND FREE:

Python is an open-source programming language which means that
anyone can create and contribute to its development. Python is free to download and
use in any operating system, like Windows, Mac or Lin.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1361

5.3 OPENCV:

Open CV (Open Source Computer Vision Library) is an open source
computer vision and machine learning software library. OpenCV was built to provide
a common infrastructure for computer vision applications and to accelerate the use of
machine perception in the commercial products. Being a BSD-licensed product,
OpenCV makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera movements, track
moving objects, extract 3D models of objects, produce 3D point clouds from stereo
cameras, stitch images together to produce a high resolution image of an entire
scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers to
overlay it with augmented reality, etc. It has C++, C, Python, Java and MATLAB
interfaces and supports Windows, Linux, Android and Mac OS.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1362

6.1 CONCLUSION:

This project demonstrated the development of a Telegram bot functioning as
a search engine using Python. We successfully integrated several key components to
create a functional and interactive bot capable of retrieving and presenting search
results to users directly within the Telegram application. This conclusion summarizes
the project's achievements, discusses the challenges encountered, explores potential
improvements, and outlines the broader implications of such a system.

The core objective was to build a bot that could efficiently handle user search
queries and deliver relevant results in a user-friendly format. We achieved this by
leveraging the Telegram Bot API to interact with the Telegram platform and a search
engine API (e.g., Google Search, Bing Search, or a custom-built index) to retrieve
information. The Python programming language proved to be a suitable choice due to
its rich ecosystem of libraries, including python-telegram-bot for Telegram interaction
and libraries like requests or specific API wrappers for search engine communication.

A crucial aspect of the project was the design of the bot's command
structure and user interface. We implemented commands like /start to initiate the bot
and a primary search command (e.g., /search or simply typing the query) to trigger
the search process. The bot was designed to parse user queries, send them to the
chosen search engine API, and then process the returned results. We focused on
presenting these results in a clear and concise manner within the Telegram interface,
often limiting the number of results per response and providing links for more detailed
information. This was essential for maintaining a positive user experience, as
overwhelming users with too much information can be counterproductive.

One of the significant challenges encountered during development was
handling the rate limits imposed by both the Telegram API and the search engine API.
These limits are put in place to prevent abuse and ensure fair usage. We
implemented strategies like caching frequent search results and introducing delays
between requests to mitigate the impact of these limitations. Furthermore, error
handling was a crucial aspect of the project.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1363

In conclusion, this project successfully demonstrated the creation of a
functional Telegram bot search engine using Python. While challenges were
encountered and overcome, the project achieved its primary objectives. The bot
provides a basic yet effective way for users to search for information directly within
Telegram. The project also serves as a foundation for future development and
exploration of more advanced features and functionalities. The integration of search
capabilities into messaging platforms represents a significant step towards making
information more accessible and user-friendly, and this project contributes to that
ongoing evolution.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1364

7.1 FUTURE ENHANCEMENT:

Future Enhancements for a Telegram Bot Search Engine

Here's a breakdown of potential future enhancements for a Telegram bot search engine,
categorized for clarity:

I. Core Search Functionality & Performance:
• Improved Indexing & Crawling:

o Deep Crawling: Go beyond surface-level content and index linked pages, documents,
and media.

o Real-time Indexing: Implement systems for near-instant updates to the search index
when new content is added.

o Distributed Indexing: Scale the indexing process across multiple servers for handling
large volumes of data.

o Content Prioritization: Develop algorithms to prioritize relevant and highquality
content in search results.

• Advanced Search Operators:

o Introduce support for boolean operators (AND, OR, NOT), phrase matching, wildcard
searches, and date range filters.

o Fuzzy Search: Implement fuzzy search to handle typos and misspellings.

o Contextual Search: Leverage user context (e.g., previous searches, group context)
to improve search relevance.

• Multimedia Search:

o Enable searching for images, videos, audio files, and documents based on their
content, metadata, and even visual/audio analysis.

o OCR (Optical Character Recognition): Implement OCR to extract text from images
and PDFs, making them searchable.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1365

o Audio Transcription: Transcribe audio and video content to make spoken words
searchable.

• Personalized Search:

o Allow users to create profiles and save their search preferences. o

Search History: Provide a search history feature.

o Personalized Recommendations: Offer content recommendations
based on user search history and interests.

• Performance Optimization:

o Implement caching mechanisms to reduce search latency.

o Asynchronous Processing: Utilize asynchronous tasks for background operations
to improve responsiveness.

o Database Optimization: Optimize database queries and indexing for faster data
retrieval.

II. User Interface & Experience (UX):
• Refined Search Results Display:

o Provide richer search result previews with snippets, thumbnails, and relevant
metadata.

o Pagination & Infinite Scrolling: Implement efficient pagination or infinite scrolling
for browsing large result sets.

o Result Filtering & Sorting: Allow users to filter and sort search results based on
various criteria (e.g., date, relevance, file type).

• Interactive Search Features: o Implement autocomplete and search suggestions as the
user types.

o Voice Search: Enable voice search functionality for hands-free searching.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1366

o Visual Search: Allow users to search by uploading images.

• Improved Bot Interactions:

o Enhance the bot's conversational capabilities to guide users through the search
process.

o Contextual Help: Provide helpful tips and instructions within the bot interface.

o User Feedback Mechanisms: Implement mechanisms for users to provide feedback
on search results and bot performance.

• Localization:

o Translate the bot interface and content into multiple languages.

III. Integration & Extensibility:
• API Integration:

o Provide an API for developers to integrate the search engine into other applications
and services.

o Integration with other Telegram bots: Allow other bots to use the search engine.

• Plugin System:

o Develop a plugin system to allow developers to extend the bot's functionality with
custom features and integrations.

o Data Source Plugins: Allow users to add custom data sources to the index.

• Web Interface:

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1367

o Provide a web interface to the search engine, for people who do not wish to use

telegram.

• Cross Platform Functionality:

o Expand the search functionality to other messaging platforms.

IV. Security & Privacy:
o Data Encryption: Encrypt sensitive user data and search queries.

o Privacy Controls: Provide users with granular control over their data and privacy
settings.

o Content Moderation: Implement mechanisms for detecting and filtering inappropriate
or harmful content.

o Authentication & Authorization: Secure the bot and its API with robust authentication
and authorization mechanisms.

V. Analytics & Monitoring:
o Usage Analytics: Track user search queries, usage patterns, and bot performance.

o Error Monitoring: Implement robust error logging and monitoring to identify and
resolve issues quickly.

o A/B Testing: Conduct A/B testing to optimize search algorithms and user interface
elements.

o Content Popularity Tracking: Track which content is most popular, and adjust the
index, and sorting algorithms according to that data.

By implementing these enhancements, a Telegram bot search engine can become a
powerful and indispensable tool for users seeking information and content within the
Telegram ecosystem and beyond.

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1368

8.1BIBLIOGRAPY

Telegram Bot API Documentation:

• Telegram. (n.d.). Bot API. Retrieved from https://core.telegram.org/bots/api o

This is the primary source for understanding how to interact with the Telegram
platform to create bots.

Python Libraries (If using Python):

• python-telegram-bot. (n.d.). Retrieved from https://python-telegram-bot.org/
o (If using Python) This is a common library for developing Telegram bots in

Python.

• Requests: HTTP for Humans. (n.d.). Retrieved from
https://requests.readthedocs.io/en/latest/ o (If using python and making

external web requests) A library to make http requests.

• Beautiful Soup Documentation. (n.d.). Retrieved from

https://www.crummy.com/software/BeautifulSoup/bs4/doc/ o (If performing

web scraping) A python library for pulling data out of HTML and XML files.

Search Engine APIs (If using external search engines):

• Google Custom Search JSON API. (n.d.). Retrieved from
https://developers.google.com/custom-search/v1/overview o If using Google's

search API.

• Bing Web Search API. (n.d.). Retrieved from
https://docs.microsoft.com/enus/bing/search-apis/web-search/overview o If

using Bing's search API.

• DuckDuckGo API. (n.d.). Retrieved from https://duckduckgo.com/api o If

using DuckDuckGo's API.

https://www.google.com/url?sa=E&source=gmail&q=https://core.telegram.org/bots/api
https://www.google.com/url?sa=E&source=gmail&q=https://python-telegram-bot.org/
https://www.google.com/url?sa=E&source=gmail&q=https://requests.readthedocs.io/en/latest/
https://www.google.com/url?sa=E&source=gmail&q=https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.google.com/url?sa=E&source=gmail&q=https://developers.google.com/custom-search/v1/overview
https://www.google.com/search?q=https://docs.microsoft.com/en-us/bing/search-apis/web-search/overview
https://www.google.com/search?q=https://docs.microsoft.com/en-us/bing/search-apis/web-search/overview
https://www.google.com/search?q=https://duckduckgo.com/api
https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1369

Database Documentation (If using a database):

• SQLite Documentation.(n.d.).Retrieved from https://www.sqlite.org/docs.html
o If using SQLite.

• MongoDBDocumentation.(n.d.).Retrievedfrom

https://www.mongodb.com/docs/ o If using MongoDB.

• PostgreSQLDocumentation.(n.d.).Retrievedfrom

https://www.postgresql.org/docs/ o If using PostgreSQL.

Articles and Tutorials:

• Search for relevant tutorials or articles on building Telegram bots, web
scraping, and API usage. Cite them using the author, title, publication, and
URL.

o Example: Smith, J. (2023). Building a Telegram Bot with Python. Medium.
Retrieved from [URL]

https://www.google.com/url?sa=E&source=gmail&q=https://www.sqlite.org/docs.html
https://www.mongodb.com/docs/
https://www.mongodb.com/docs/
https://www.google.com/url?sa=E&source=gmail&q=https://www.postgresql.org/docs/
https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1370

9.1 DATA FLOW DIAGRAM.

9.3 TABLE DESIGN

LIBRARY IMPORT KEY

TORCH import_torch

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1371

TRANSFORMERS Import_transformers

TELEGRAM Import_telegram-bot-update

9.4 SAMPLE SCREEN SHORTS

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1372

9.4 SAMPLE CODE

Import required libraries import
os

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1373

Install necessary Python packages for model, transformers, Telegram Bot API, and
numerical operations os.system("pip install torch transformers accelerate python-
telegram-bot numpy")

Import essential modules import
torch

from transformers import AutoModelForCausalLM, AutoTokenizer from
telegram import Update

from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler,
ContextTypes, filters

Telegram Bot Token (replace this with your actual bot token)
BOT_TOKEN = "7600496017:AAGD6_VhsgFMbWhr89E2_SCUH87nZobgeT8"

Check if a GPU is available, and if so, use it, otherwise default to CPU device

= torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using

device: {device}") # Output to confirm which device is being used

Load the pre-trained Qwen model and tokenizer for natural language generation

MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct" print("Loading the model...")

Initialize the tokenizer, which converts text to tokenized format for the model tokenizer
= AutoTokenizer.from_pretrained(MODEL_NAME)

Load the pre-trained model, selecting the appropriate data type (float16 for GPU or
float32 for CPU)
model =
AutoModelForCausalLM.from_pretrained(MODEL_NAME,

torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Choose
dtype based on the device (GPU/CPU) device_map=None # Disable automatic
device mapping for better control over device allocation

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1374

).to(device) # Explicitly move the model to the correct device (GPU/CPU) print("Model
loaded successfully!") # Confirm model is loaded

Function to generate a response from the model based on user input def
generate_llm_response(user_input):

Define the system message to set the role of the AI
messages = [

{"role": "system", "content": "You are a helpful assistant."}, # Assistant's role
{"role": "user", "content": user_input} # The user input as the context for the model

]

Prepare the input text with proper formatting for the model (this may vary based
on model design) text = tokenizer.apply_chat_template(

messages, tokenize=False, add_generation_prompt=True
)

Tokenize the input and send it to the model (returning tensor format)
inputs = tokenizer([text], return_tensors="pt").to(device)

Generate the model output with specific parameters:
- max_new_tokens: Max tokens to generate in the response
- do_sample: Enable sampling for more variability in responses

- temperature: Controls randomness (higher value = more random)

output_ids = model.generate(

**inputs,
max_new_tokens=1024, # Limit the response to a reasonable length

do_sample=True, temperature=0.7 # Set the level of

creativity/randomness in the response

)

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1375

Decode the response and remove special tokens
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

Post-process: clean up the response by removing the assistant's label if it exists
if "assistant\n" in response:

response = response.split("assistant\n")[-1].strip()

return response

Command handler for "/start" which sends a welcome message async
def start(update: Update, context: ContextTypes.DEFAULT_TYPE):

await update.message.reply_text("Hello! I am your AI assistant powered by Julius. Send
me any text, and I will respond!")

Handle incoming text messages from users
async def handle_message(update: Update, context:
ContextTypes.DEFAULT_TYPE):
user_input = update.message.text # Get the message text sent by the user

await update.message.reply_text(" Julius Generating response... Please wait.") #
Inform the user that the response is being generated

Generate the model's response based on user input
response = generate_llm_response(user_input)

Send the generated response back to the user
await update.message.reply_text(response)

Handle unknown commands (any command other than "/start") async def
unknown(update: Update, context: ContextTypes.DEFAULT_TYPE):

await update.message.reply_text("Sorry, I did not understand that command. Use /start
to begin.")

https://www.irjweb.com/

International Research Journal of Education and Technology

Peer Reviewed Journal
ISSN 2581-7795

© 2025, IRJEdT Volume: 08 Issue: 04 | Apr-2025 1376

Main function to initialize the Telegram bot and register the handlers def
main():

print("Starting the bot...")

Initialize the Telegram bot with the given bot token
app = ApplicationBuilder().token(BOT_TOKEN).build()

Add handlers for different commands and message types
app.add_handler(CommandHandler("start", start)) # "/start" command handler
app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND,
handle_message)) # Handler for any text message that's not a command
app.add_handler(MessageHandler(filters.COMMAND, unknown)) # Handler for
unknown commands

Start polling for new messages and run the bot print("Bot is running. Press
Ctrl+C to stop.") # Inform the user that the bot is active

app.run_polling() # Run the bot and handle incoming updates/messages

Check if this script is being executed directly and then run the main function

if __name__ == "__main__": main()

https://www.irjweb.com/

	AN APPLICATION ON TELEGRAM BOT SEARCH ENGINE USING
	 1.1 INTRODUCTION:
	1.1.1INTRODUCTION ON VISUAL STUDIO:
	1.2 SYSTEM SPECIFICATION:
	1.2.1 SOFTWARE REQUIREMENTS:
	1.2.2 HARDWARE REQUIREMENTS

	2.1 EXISTING AND PROPOSED SYSTEM
	2.1.1 EXISTING SYSTEM:
	2.1.2 PROPOSED SYSTEM:
	2.1.3 ABOUT SOFTWARE:

	2.2 FEATURES:
	3.1 SYSTEM DESIGN:
	3.1.1 INPUT DESIGN:
	3.1.2 OUTPUT DESIGN:
	3.1.3 DATABASE DESIGN:

	3.2 MODULES:
	4.1 TESTING AND METHODOLOGIES
	4.1.1 SYSTEM TESTING:
	4.1.2 UNIT TESTING:

	4.2 INTEGRATION TESTING:
	4.2.1 ALPHA TESTING:
	4.2.2 BETA TESTING:

	4.3 IMPLEMENTATION
	4.3.1 PYTHON IMPLEMENTATION:

	5.1 SYSTEM STUDY:
	5.2 EXTENDABLE:
	5.2.1 OBJECT-ORIENTED APPROACH:
	5.2.2 HIGHLY DYNAMIC:
	5.2.3 EXTENSIVE ARRAY OF LIBRARIES:
	5.2.4 OPEN SOURCE AND FREE:

	5.3 OPENCV:
	6.1 CONCLUSION:
	7.1 FUTURE ENHANCEMENT:

	8.1BIBLIOGRAPY
	9.1 DATA FLOW DIAGRAM.
	9.3 TABLE DESIGN
	9.4 SAMPLE SCREEN SHORTS
	9.4 SAMPLE CODE

